Какая единица используется для измерения электрического сопротивления. Сопротивление тока

Физика полна понятий, которые сложно представить. Яркий пример этого — тема про электричество. Почти все встречающиеся там явления и термины сложно увидеть или представить.

Что такое электрическое сопротивление? Откуда оно появляется? Почему возникает напряжение? И почему у тока есть сила? Вопросов бесконечное количество. Стоит разобраться во всем по порядку. И начать хорошо бы с сопротивления.

Что происходит в проводнике, когда по нему идет ток?

Бывают ситуации, когда материал, который обладает проводящей способностью, оказывается между двумя полюсами электрического поля: положительным и отрицательным. И тогда по нему идет электрический ток. Это проявляется в том, что свободные электроны начинают направленное движение. Поскольку они имеют отрицательный заряд, то их перемещение осуществляется в одну сторону - к плюсу. Интересно, что за направление электрического тока принято указывать другое - от плюса к минусу.

Во время движения электроны ударяются об атомы вещества и передают им часть своей энергии. Этим объясняется то, что включенный в сеть проводник нагревается. А сами электроны замедляют свое движение. Но электрическое поле их снова ускоряет, поэтому они вновь устремляются к плюсу. Этот процесс происходит бесконечно, пока вокруг проводника имеется электрическое поле. Получается, что именно электроны испытывают сопротивление электрического тока. То есть чем больше препятствий они встречают, тем выше значение этой величины.

Что такое электрическое сопротивление?

Ему можно дать определение исходя из двух позиций. Первая связана с формулой для закона Ома. И звучит оно так: электрическое сопротивление — это физическая величина, которая определяется как отношение напряжения в проводнике к силе тока, протекающего в нем. Математическая запись приведена немного ниже.

Вторая основывается на свойствах тела. Электрическое сопротивление проводника — это физическая величина, которая указывает на свойство тела преобразовывать энергию электричества в тепло. Оба этих утверждения верны. Только в школьном курсе чаще всего останавливаются на запоминании первого. Обозначается изучаемая величина буквой R. Единицы, в которых измеряется электрическое сопротивление, — Ом.

По каким формулам его можно найти?

Самая известная вытекает из закона Ома для участка цепи. Она объединяет электрический ток, напряжение, сопротивление. Выглядит так:


Это формула под номером 1.
Вторая учитывает то, что сопротивление зависит от параметров проводника:
Эта формула имеет номер 2. В ней введены такие обозначения:

Удельное электрическое сопротивление — это физическая величина, которая равна сопротивлению материала длиной в 1 м и с площадью сечения в 1 м 2 .

В таблице указана системная единица измерения удельного сопротивления. В реальных ситуациях не бывает такого, чтобы сечение измерялось в квадратных метрах. Почти всегда это квадратные миллиметры. Поэтому и удельное электрическое сопротивление удобнее брать в Ом * мм 2 / м, а площадь подставлять в мм 2 .

От чего и как зависит сопротивление?

Во-первых, от вещества, из которого изготовлен проводник. Чем больше значение, которое имеет удельное электрическое сопротивление, тем хуже он будет проводить ток.

Во-вторых, от длины провода. И здесь зависимость прямая. С увеличением длины сопротивление возрастает.

В-третьих, от толщины. Чем толще проводник, тем меньше у него сопротивление.

И наконец, в-четвертых, от температуры проводника. И здесь все не так однозначно. Если речь идет о металлах, то их электрическое сопротивление возрастает по мере нагревания. Исключение составляют некоторые специальные сплавы - их сопротивление практически не изменяется при нагревании. К ним относятся: константан, никелин и манганин. Когда же нагреваются жидкости, то их сопротивление уменьшается.

Какие существуют резисторы?

Это элемент, который включается в электрическую цепь. Он имеет вполне конкретное сопротивление. Именно это и используется в схемах. Принято разделять резисторы на два вида: постоянные и переменные. Их название связано с тем, можно ли изменить их сопротивление. Первые — постоянные — не позволяют каким-либо образом изменить номинальное значение сопротивления. Оно остается неизменным. Вторые — переменные — дают возможность производить регулировку, изменяя сопротивление в зависимости от потребностей конкретной схемы. В радиоэлектронике выделяют еще один вид — подстроечные. Их сопротивление изменяется только в тот момент, когда нужно настроить прибор, а потом остается постоянным.

Как на схемах выглядит резистор?

Прямоугольник с двумя выходами из узких его сторон. Это постоянный резистор. Если с третьей стороны к нему пририсована стрелка, то он уже переменный. К тому же на схемах еще подписывается и электрическое сопротивление резистора. Прямо внутри этого прямоугольника. Обычно просто цифры или с наименованием, если они очень большие.

Для чего существует изоляция и зачем ее нужно измерять?

Ее назначение - обеспечение электрической безопасности. Электрическое сопротивление изоляции является главной характеристикой. Оно не позволяет протекать через тело человека опасному значению тока.


Выделяют четыре вида изоляции:
  • рабочая - ее назначение в том, чтобы обеспечить нормальное функционирование оборудования, поэтому она не всегда обладает достаточным уровнем защиты человека;
  • дополнительная является дополнением к первому виду и защищает людей;
  • двойная объединяет два первых вида изоляции;
  • усиленная, которая представляет собой усовершенствованный вид рабочей, она так же надежна, как дополнительная.

Все устройства, которые имеют бытовое назначение, обязаны быть оборудованы двойной или усиленной изоляцией. Причем она должна обладать такими характеристиками, чтобы выдерживать любые механические, электрические и тепловые нагрузки.

С течением времени изоляция стареет, и ее параметры ухудшаются. Этим объясняется то, что она требует регулярного профилактического осмотра. Его целью является устранение дефектов, а также измерение ее активного сопротивления. Для этого используется специальный прибор — мегаомметр.

Примеры задач с решениями

Условие 1: требуется определить электрическое сопротивление железной проволоки, которая имеет длину, равную 200 м, и площадь поперечного сечения в 5 мм².

Решение. Нужно воспользоваться второй формулой. В ней неизвестно только удельное сопротивление. Но его можно посмотреть в таблице. Оно равно 0,098 Ом * мм / м 2 . Теперь нужно только подставить значения в формулу и сосчитать:

R = 0,098 * 200 / 5 = 3,92 Ом.

Ответ: сопротивление приблизительно равно 4 Ом.

Условие 2: вычислить электрическое сопротивление проводника, изготовленного из алюминия, если его длина равна 2 км, а площадь сечения — 2,5 мм².

Решение. Аналогично первой задаче, удельное сопротивление — 0,028 Ом * мм / м 2 . Чтобы получить верный ответ, потребуется перевести километры в метры: 2 км = 2000 м. Теперь можно считать:

R = 0,028 * 2000 / 2,5 = 22,4 Ом.

Ответ : R = 22,4 Ом.

Условие 3: какой длины потребуется проволока, если ее сопротивление должно быть равно 30 Ом? Известна площадь ее сечения — 0,2 мм², и материал — никелин.

Решение. Из той же формулы сопротивления можно получить выражение для длины проволоки:

l = (R * S) / ρ. Известно все, кроме удельного сопротивления, которое нужно взять из таблицы: 0,45 Ом * мм 2 / м. После подстановки и расчетов получается, что l = 13,33 м.

Ответ: приблизительное значение длины равно 13 м.

Условие 4: определить материал, из которого изготовлен резистор, если его длина равна 40 м, сопротивление — 16 Ом, сечение — 0,5 мм².

Решение. Аналогично третьей задаче, выражается формула для удельного сопротивления:

ρ = (R * S) / l. Подстановка значений и расчеты дают такой результат: ρ = 0,2 Ом * мм 2 / м. Данное значение удельного сопротивления характерно для свинца.

Ответ : свинец.

– это измерительный прибор, служащий для определения величины сопротивления в электрических цепях. Сопротивление измеряется в Омах и обозначается латинской буквой R . О том, что такое Ом в популярной форме изложено в статье сайта «Закон силы тока» .

Структурная схема и обозначение на схемах Омметра

Измерительный прибор Омметр структурно представляет собой стрелочный или цифровой индикатор с последовательно включенной батарейкой или источником питания, как показано на фотографии.

Функцию измерения сопротивления имеют все комбинированные приборы – стрелочные тестеры и цифровые мультиметры.

На практике, прибор, который измеряет только сопротивление, используется для особых случаев, например, для измерения сопротивления изоляции при повышенном напряжении, сопротивления заземляющего контура или как образцовый, служащий для поверки других омметров боше низкой точности.

На электрических измерительных схемах омметр обозначается греческой буквой омега заключенной в окружность, как показано на фотографии.

Подготовка Омметра для измерений

Ремонт электропроводки, электротехнических и радиотехнических изделий заключается в проверке целостности проводов и в поиске нарушения контакта в их соединениях.

В одних случаях сопротивление должно быть равно бесконечности, например сопротивление изоляции. А в других – равно нулю, например сопротивление проводов и их соединений. А в некоторых случаях равно определенной величине, например сопротивление нити накала лампочки или нагревательного элемента.

Внимание! Измерять сопротивление цепей, во избежание выхода из строя Омметра, допускается выполнять только при полном их обесточивании. Необходимо вынуть вилку из розетки или вынуть батарейки из отсека. Если в схеме есть электролитические конденсаторы большей емкости, то их необходимо разрядить, замкнув выводы конденсатора через сопротивление номиналом около 100 кОм на несколько секунд.

Как и при измерениях напряжения, перед измерением сопротивления, необходимо подготовить прибор. Для этого нужно установить переключатель прибора в положение, соответствующее минимальному измерению величины сопротивления.


Перед измерениями следует проверить работоспособность прибора, так как могут быть плохими элементы питания и Омметр может не работать. Для этого нужно соединить между собой концы щупов.

У тестера стрелка при этом должна установится точно на нулевую отметку, если не установилась, то можно покрутить ручку «Уст. 0». Если не получится, надо заменить батарейки.

Для прозвонки электрических цепей, например, при проверке электрической лампочки накаливания, можно пользоваться прибором, у которого сели батарейки и стрелка не устанавливается на 0, но хоть немного реагирует при соединении щупов. Судить о целостности цепи будет возможно по факту отклонения стрелки. Цифровые приборы должны тоже показывать нулевые показания, возможно отклонение в десятых долях омов, за счет сопротивления щупов и переходного сопротивления в контактах подключения их к клеммам прибора.

При разомкнутых концах щупов, стрелка тестера должна установится в точку, обозначенную на шкале ∞, а в цифровых приборах, мигать перегрузка или высвечиваться цифра 1 на индикаторе с левой стороны.

Омметр готов к работе. Если прикоснуться концами щупов к проводнику, то в случае его целостности, прибор покажет нулевое сопротивление, в противном случае, показания не изменятся.

В дорогих моделях мультиметров есть функция прозвонки цепей со звуковой индикацией, обозначенная в секторе измерения сопротивлений символом диода. Она очень удобна при прозвонке низкоомных цепей, например проводов кабеля витых пар для Интернета или бытовой электропроводки. Если провод цел, то прозвонка сопровождается звуковым сигналом, что освобождает от необходимости считывать показания с индикатора мультиметра.

Примеры из практики измерения сопротивления изделий

Теоретически обычно все понятно, однако на практике часто возникают вопросы, на которые лучше всего помогут ответить примеры проверки омметром наиболее часто встречающихся изделий.

Проверка ламп накаливания

Перестала светить лампочка накаливания в светильнике или в автомобильных бортовых приборах, как узнать причину? Неисправен может быть выключатель, электрический патрон или электропроводка . С помощью тестера легко проверяется любая лампа накаливания из домашнего светильника или фары автомобиля, нити накала ламп дневного света и энергосберегающих ламп. Для проверки достаточно установить переключатель прибора в положение измерения минимального сопротивления и прикоснуться концами щупов к выводам цоколя лампочки.

Сопротивление нити накала лампочки составило 51 Ом, что свидетельствует о ее исправности. Если бы нить была в обрыве, то прибор показал бы бесконечное сопротивление. Сопротивление галогенной лампочки на 220 В мощностью 50 ватт при свечении составляет около 968 Ом, автомобильной лампочки на 12 вольт мощностью 100 ватт, около 1,44 Ом.

Стоит заметить, что сопротивление нити лампы накаливания в холодном состоянии (когда лампочка не горит) в несколько раз меньше, чем в разогретом. Это связано с физическим свойством вольфрама. Его сопротивление с разогревом нелинейно возрастает. Поэтому лампы накаливания, как правило, перегорают в момент включения.

Проверка звуковоспроизводящих наушников

Бывает у наушников в одном из излучателей, или в обоих сразу, звук искажаться, периодически исчезает или отсутствует. Тут возможны два варианта, либо неисправны наушники, или устройство, с которого поступает сигнал. С помощью омметра легко найти причину их поломки и отремонтировать наушники .

Для проверки наушников нужно подсоединить концы щупов к их разъему. Обычно наушники подключаются к аппаратуре с помощью разъема типа Джек 3,5 мм, показанному на фотографии.

Одним концом щупа прикасаются к общему выводу, а вторым по очереди к выводам правого и левого каналов. Сопротивление должно быть одинаковым и составлять около 40 Ом. Обычно в паспорте на наушники сопротивление указывается.

Если сопротивление каналов сильно отличается, то возможно в проводах имеется короткое замыкание или обрыв провода. Убедиться в этом легко, достаточно концы щупов подсоединить к выводам правого и левого каналов. Сопротивление должно быть в два раза больше, чем одного наушника, то есть уже 80 Ом. Практически измеряется суммарное сопротивление последовательно включенных излучателей.

Если сопротивление при шевелении проводников во время измерений изменяется, значит, провод в каком-то месте перетертый. Обычно провода перетираются в местах выхода из Джека или излучателей.

Для локализации места обрыва провода нужно во время измерений, изгибать провод локально, зафиксировав остальную его часть. По нестабильности показаний омметра вы определите место дефекта. Если у Джека, то нужно приобрести разборный разъем, откусить старый с участком плохого провода и распаять провод на контакты нового Джека.

Если обрыв находится у входа в наушники, то нужно их разобрать, удалить дефектную часть провода, зачистить концы и припаять, к тем же контактам, к которым провода были припаяны раньше. В статье сайта «Как паять паяльником» Вы можете ознакомиться об искусстве пайки.

Измерение номинала резистора (сопротивления)

Резисторы (сопротивления) широко применяются в электрических схемах. Поэтому при ремонте электронных устройств возникает необходимость проверки исправности резистора или определения его величины.

На электрических схемах резистор обозначается в виде прямоугольника, внутри которого иногда пишут римскими цифрами его мощность. I – один ватт, II – два ватта, IV – четыре ватта, V – пять ватт.

Проверить резистор (сопротивление) и определить его номинал можно с помощью мультиметра, включенного в режим измерения сопротивления. В секторе режима измерения сопротивления, предусмотрено несколько положений переключателя. Это сделано для того, чтобы повысить точность результатов измерений.

Например, положение 200 позволить измерять сопротивления величиной до 200 Ом. 2k – до 2000 Ом (до 2 кОм). 2M – до 2000000 Ом. (до 2 МОм). Буква k после цифр обозначает приставку кило – необходимость умножения числа на 1000, M обозначает Мега, и число нужно умножить на 1 000 000.

Если переключатель установить в положение 2k, то при измерении резистора номиналом 300 кОм прибор покажет перегрузку. Необходимо переключить его в положение 2М. В отличие, от измерения напряжения, в каком положении находится переключатель, не имеет значения, всегда можно в процессе измерений его переключить.

Онлайн калькуляторы для определения номинала резисторов
по цветовой маркировке

Иногда при проверке резистора, омметр показывает, какое-то сопротивление, но если резистор в результате перегрузок изменил свое сопротивление и оно уже не соответствует маркировке, то такой резистор применять недопустимо. Современные резисторы маркируются с помощью цветных колец. Определить номинал резистора, маркированного цветными кольцами удобней всего с помощью онлайн калькулятора.


маркированных 4 цветными кольцами

Онлайн калькулятор для определения сопротивления резисторов
маркированных 5 цветными кольцами

Проверка диодов мультиметром или тестером

Полупроводниковые диоды широко применяются в электрических схемах для преобразования переменного в постоянный ток, и обычно при ремонте изделий, после внешнего осмотра печатной платы в первую очередь проверяют диоды. Диоды изготавливают из германия, кремния и других полупроводниковых материалов.

По внешнему виду диоды бывают разной формы, прозрачные и цветные, в металлическом, стеклянном или пластмассовом корпусе. Но они всегда имеют два вывода и сразу бросаются в глаза. В схемах в основном применяются выпрямительные диоды, стабилитроны и светодиоды.


Условное обозначение диодов на схеме представляет собой стрелку, упирающуюся в отрезок прямой линии. Обозначается диод латинскими буквами VD, за исключением светодиодов, которые обозначаются буквами HL, В зависимости от назначения диодов в схему обозначения вносятся дополнительные элементы, что и отражено на чертеже выше. Так как в схеме диодов бывает больше одного, то для удобства после букв VD или HL добавляется порядковый номер.

Проверить диод гораздо легче, если представлять, как он работает. А работает диод как ниппель. Когда Вы надуваете мячик, резиновую лодку или автомобильное колесо, то воздух в них входит, а обратно его не пускает ниппель.

Диод работает точно также. Только пропускает в одну сторону не воздух, а электрический ток. Поэтому для проверки диода нужен источник постоянного тока, которым и может служить мультиметр или стрелочный тестер, так как в них установлена батарейка.


Выше представлена структурная схема работы мультиметра или тестера в режиме измерения сопротивления. Как видно, на клеммы подается напряжение постоянного тока определенной полярности. Плюс принято подавать на красную клемму, а минус на черную. При прикосновении к выводам диода таким образом, что плюсовой выход прибора окажется на анодном выводе диода, а минусовой на катоде диода, то ток через диод пойдет. Если щупы поменять местами, то диод ток не пропустит.

Диод обычно может иметь три состояния – быть исправным, пробитым или в обрыве. При пробое диод превращается в отрезок провода, будет пропускать ток при любом порядке прикосновении щупов. При обрыве напротив, ток не будет идти никогда. Редко, но бывает и еще одно состояние, когда изменяется сопротивление перехода. Такую неисправность можно определить по показаниям на дисплее.

По выше приведенной инструкции можно проверять выпрямительные диоды, стабилитроны, диоды Шоттки и светодиоды, как с выводами, так и в SMD исполнении. Рассмотрим, как проверять диоды на практике.


В первую очередь необходимо, соблюдая цветовую маркировку, вставить в мультиметр щупы. Обычно в COM вставляется черный провод, а в V/R/f – красный (это плюсовой вывод батарейки). Далее необходимо установить переключатель режимов работы в положение прозвонки (если есть такая функция измерений), как на фотографии или в положение 2kOm. Включить прибор, сомкнуть концы щупов и убедиться в его работоспособности.


Практику начнем с проверки древнего германиевого диода Д7, этому экземпляру уже 53 года. Диоды на основе германия сейчас практически не выпускают из-за высокой стоимости самого германия и низкой предельной рабочей температуры, всего 80-100°С. Но эти диоды имеют самое маленькое падение напряжения и уровень собственных шумов. Их очень ценят сборщики ламповых усилителей звука. В прямом включении падение напряжения на диоде из германия составляет всего 0,129 В. Стрелочный тестер покажет приблизительно 130 Ом. При смене полярности мультиметр показывает 1, стрелочный тестер покажет бесконечность, что означает очень большое сопротивление. Данный диод исправен.

Порядок проверки кремниевых диодов не отличается от проверки сделанных из германия. На корпусе диода, как правило, помечается вывод катода, это может быть окружность, линия или точка. В прямом включении падение на переходе диода составляет около 0,5 В. У мощных диодов напряжение падения меньше, и составляет около 0,4 В. Точно также, проверяются стабилитроны и диоды Шоттки. Падение напряжения у диодов Шоттки составляет около 0,2 В.


У мощных светодиодов на прямом переходе падает более 2 В и прибор может показывать 1. Но тут сам светодиод является индикатором исправности. Если при прямом включении видно, даже самое слабое свечение светодиода, то он исправен.

Надо заметить, что некоторые типы мощных светодиодов состоят из цепочки включенных последовательно несколько светодиодов и внешне это не заметно. Такие светодиоды иногда имеют падение напряжения до 30 В, и проверить их возможно только от блока питания с напряжением на выходе более 30В и включенным последовательно со светодиодом токоограничивающим резистором .

Проверка электролитических конденсаторов

Различают два основных вида конденсаторов, простые и электролитические. Простые конденсаторы можно включать в схему как угодно, а электролитические только с соблюдением полярности, иначе конденсатор выйдет из строя.

На электрических схемах конденсатор обозначается двумя параллельными линиями. При обозначении электролитического конденсатора обязательно обозначается его полярность подключения знаком «+».

Электролитические конденсаторы низко надежны, и являются самой распространенной причиной отказа электронных блоков изделий. Вздутый конденсатор в блоке питания компьютера или другого устройства, не редкая картина.

Тестером или мультиметром в режиме измерения сопротивления можно успешно проверять исправность электролитических конденсаторов, или как еще говорят, прозвонить. Конденсатор нужно выпаять из печатной платы и обязательно разрядить, чтобы не повредить прибор. Для этого нужно закоротить его выводы металлическим предметом, например пинцетом. Для проверки конденсатора переключатель на приборе нужно установить в режим измерения сопротивления в диапазоне сотен килоом или мегаом.

Далее нужно, прикоснуться щупами к выводам конденсатора. В момент касания стрелка прибора должна резко отклониться по шкале и медленно вернуться в положение бесконечного сопротивления. Скорость отклонения стрелки зависит от величины емкости конденсатора. Чем емкость конденсатора больше, тем медленнее будет возвращаться на место стрелка. Цифровой прибор (мультиметр) при прикосновении щупов к выводам конденсатора, сначала покажет маленькое сопротивление, а затем все возрастающее вплоть до сотен мегом.

Если поведение приборов отличается от выше описанного, например сопротивление конденсатора составляет ноль Ом или бесконечность, то в первом случае имеется пробой между обмотками конденсатора, а во втором, обрыв. Такой конденсатор неисправен и применению не подлежит.

Введение ………………………………………………………………………………2

Измерение сопротивления при постоянном токе …………………..…….3

Метод амперметра-вольтметра…………………………………………….……3

Метод непосредственной оценки………………………………………………..4

Мосты для измерения сопротивления на постоянном токе………………...6

Измерение очень больших сопротивлений……………………………………9

Измерение сопротивления при переменном токе ………………….…...10

Измеритель иммитанса…………………………………………..……………...10

Измерительная линия…………………………………………………..……….11

Измерение ультрамалых сопротивлений…………………………..…………13

Выводы ………………………………………………………………….………..…14

Введение

Электрическое сопротивление - основная электрическая характеристика проводника, величина, характеризующая противодействие электрической цепи или ее участка электрическому току. Также сопротивлением могут называть деталь (её чаще называют резистором) оказывающую электрическое сопротивление току. Электрическое сопротивление обусловлено преобразованием электрической энергии в другие виды энергии и измеряется в Омах.

Сопротивление (часто обозначается буквой R) считается, в определённых пределах, постоянной величиной для данного проводника и её можно определить как

R - сопротивление;

U - разность электрических потенциалов на концах проводника, измеряется в вольтах;

I - ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах.

Для практического измерения сопротивлений применяют множество различных методов, в зависимости от условий измерения и характера объектов, от требуемой точности и быстроты измерений. Например различают методы для измерения сопротивления при постоянном токе и при переменном, измерение больших сопротивлений, сопротивлений малых и ультрамалых, прямые и косвенные и т.д.

Целью работы является выявление основных, наиболее часто встречающихся в практике, методов измерения сопротивлений.

Измерение сопротивления при постоянном токе

Основными методами измерения сопротивления постоянному току являются косвенный метод, метод непосредственной оценки, а также мостовой метод. Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности измерений. Из косвенных методов наиболее универсальным является метод амперметра-вольтметра.

Метод амперметра-вольтметра

Данный метод основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (а) и измерение малых сопротивлений (б). По результатам измерения тока и напряжения определяют искомое сопротивление.

Для схемы (а) искомое сопротивление и относительную методическую погрешность можно определить по формулам:

где Rx - измеряемое сопротивление, а Rа - сопротивление амперметра.

Для схемы (б) искомое сопротивление и относительная методическая погрешность измерения определяются по формулам:

Из формулы видно, что при подсчете искомого сопротивления по приближенной формуле возникает погрешность, оттого, что при измерении токов и напряжений во второй схеме амперметр учитывает и тот ток, который проходит через вольтметр, а в первой схеме вольтметр измеряет напряжение помимо резистора еще и на амперметре.

Из определения относительных методических погрешностей следует, что измерение по схеме (а) обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме (б) - при измерении малых сопротивлений. Погрешность измерения по данному методу рассчитывается по выражению:

«Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежание нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального».

Достоинство схем метода измерение амперметром и вольтметром заключается в том, что по резистору с измеряемым сопротивлением можно пропускать тот же ток, как и в условии его работы, что является важным при измерении сопротивлений, значения которых зависят от тока.

Метод непосредственной оценки.

Метод непосредственной оценки предполагает измерение сопротивления постоянному току с помощью омметра. Омметром называют измерительный прибор непосредственного отсчёта для определения электрических активных (активные сопротивлений также называют омическими сопротивлениями) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, тераомметры, гигаомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.

По принципу действия омметры можно разделить на магнитоэлектрические - с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные, которые бывают аналоговые или цифровые.

«Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания. Для измерения сопротивлений от сотен Ом до нескольких мегаом измеритель и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе и отклонение подвижной части прибора a пропорциональны: I = U/(r0 + rx), где U - напряжение источника питания; r0 - сопротивление измерителя. При малых значениях rx (до нескольких ом) измеритель и rx включают параллельно».

За основу логометрических мегаомметров берется логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения таких измерений, в подобных приборах обычно используют механический индуктор - электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.

Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый резистор включается в цепь обратной связи (линейная шкала) или на вход усилителя. Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.

«При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют так называемый метод четырехпроводного подключения. Сущность метода состоит в том, что используются две пары проводов - по одной паре на измеряемый объект подается ток определенной силы, с помощью другой пары с объекта на прибор подаётся падение напряжения пропорциональное силе тока и сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь».

Не имея определенных начальных знаний об электричестве, тяжело себе представить, как работают электрические приборы, почему вообще они работают, почему надо включать телевизор в розетку, чтобы он заработал, а фонарику хватает маленькой батарейки, чтобы он светил в темноте.

И так будем разбираться во всем по порядку.

Электричество

Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом. Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон.

Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.

Данное явление называется статическим электричеством . Вы можете повторить данный опыт. Для этого хорошенько потрите шерстяной тканью обычную пластмассовую линейку и поднесите ее к мелким бумажным кусочкам.

Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.

Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.

Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10 -19 Кл (Кулон). Обозначается е или е – .

Напряжение

Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение . Единица измерения напряжения – Вольт (В или V ). В формулах и расчетах напряжение обозначается буквой V . Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд , высота водяного столба (давление) – это напряжение , а скорость потока воды – это электрический ток .

Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.

Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки. Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток).

Электрический ток

Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками . А вещества, в которых таких частиц нет – диэлектриками .

Единица измерения силы тока – Ампер (А ). В формулах и расчетах сила тока обозначается буквой I . Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·10 18 электронов) за 1 секунду.

Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.

Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление .

Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением , током и сопротивлением . Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.

Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение . Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение . Максимальные и минимальные значения (на графике обозначены как Io ) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц .

Сопротивление

Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом или греческой буквой омега Ω ). В формулах и расчетах сопротивление обозначается буквой R . Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.

Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.

На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.

Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.

Мощность

Электрическая мощность – это физическая величина, определяющая скорость преобразования электроэнергии. Например, вы не раз слышали: «лампочка на столько-то ватт». Это и есть мощность потребляемая лампочкой за единицу времени во время работы, т.е. преобразовании одного вида энергии в другой с некоторой скоростью.

Источники электроэнергии, например генераторы, также характеризуется мощностью, но уже вырабатываемой в единицу времени.

Единица измерения мощности – Ватт (обозначается Вт или W ). В формулах и расчетах мощность обозначается буквой P . Для цепей переменного тока применяется термин Полная мощность , единица измерения – Вольт-ампер (В·А или V·A ), обозначается буквой S .

И в завершение про Электрическую цепь . Данная цепь представляет собой некоторый набор электрических компонентов, способных проводить электрический ток и соединенных между собой соответствующим образом.

Что мы видим на этом изображении – элементарный электроприбор (фонарик). Под действием напряжения U (В) источника электроэнергии (батарейки) по проводникам и другим компонентам обладающих разными сопротивлениями 4.59 (237 Голосов)

Сопротивление происходит от слова “сопротивляться”. В электронике есть такое понятие, как Ом. Что это такое и с чем его едят? Для более развернутого ответа, давайте рассмотрим вот такую схему:

Буквы в кружочках – это измерительные приборы


Вольтметр служит для измерения напряжения , а амперметр – для измерения силы тока . Как ими правильно пользоваться читаем в этой статье.

Итак, если пропустить по проводу электрический ток с силой тока в 1 Ампер, а на концах этого провода у нас появится напряжение в 1 Вольт, это значит, что наш провод обладает сопротивлением в 1 Ом.


В электротехнике и электронике сопротивление обозначается буквой R . Например, тело человека имеет сопротивление от нескольких сотен Ом и до 100 кОм. Для расчетов берут 1 кОм. Это зависит от многих факторов, таких как пол, возраст, состояние кожи, сила прикосновения проводников к коже, уровень алкоголя в крови и тд. Медный провод длиной в метр и сечением в 1 мм 2 имеет сопротивление 0,1 Ом.

От чего зависит сопротивление

Какой из предметов будет оказывать большее сопротивление электрическому току?

Садовый шланг


или нефтяная магистраль?


Конечно же садовый шланг. Почему? Да потому что его диаметр намного меньше, чем у нефтяной магистрали.

А теперь ответьте на такой вопрос, какой шланг будет обладать большим сопротивлением, с учетом того, что их длины и диаметры равны?

Гофрированный


или гладкий?

Разумеется гофрированный. Его стенки будут препятствовать потоку воды.

И еще один нюанс. У нас есть садовый гофрированный шланг. Мы обрезали от него небольшую длину, но все равно остался еще большой моток шланга



У какого шланга будет большее сопротивление потоку воды? Думаю, у того, который длиннее.

Формула сопротивления

Как ни странно, но дела с проводом обстоят точно также. Чем тоньше и длиннее провод, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен. Различные материалы по разному проводят электрический ток. Есть те, которые замечательно проводят ток, типа серебра, а есть те, которые почти не пропускают через себя электрический ток, типа фарфора.

Поэтому, формула будет иметь такой вид:


В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом х мм 2 /м. Чтобы перевести в Ом х м , достаточно умножить на 10 -6 , так как 1 мм 2 =10 -6 м 2 .


Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником в конструировании радиоэлектронных устройств. Ну а самым распространенными и дешевыми – медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.

Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками , а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками . Между ними стоит класс полупроводников .

Резисторы

В электронике уже имеются специальные радиоэлектронные компоненты. Их называют .

Существуют постоянные резисторы, у которых сопротивление практически не меняется:

а есть также и переменные резисторы:


С помощью них можно изменять сопротивление в каком-либо определенном диапазоне.

Последовательное и параллельное соединение резисторов

В электрических схемах постоянные резисторы обозначаются так:

переменные выглядят немного по-другому


Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.


В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где значение между точками А и В (R AB) и есть то самое R общее:


При последовательном соединении номиналы резисторов просто суммируются


В этом случае

Резюме

Сопротивление играет главную роль в электронике и электротехнике. Любой материал во Вселенной обладает сопротивлением электрическому току. Некоторые материалы очень плохо пропускают через себя электрический ток, а некоторые материалы, такие как серебро и медь, обладают очень малым сопротивлением и отлично пропускают через себя электрический ток.

На сопротивление влияют также такие параметры, как материал, площадь поперечного сечения материала, а также его длина. Материалы, которые отлично проводят через себя электрический ток называются проводниками, а которые препятствую протеканию электрического тока – диэлектриками.

Резисторы – специальные радиоэлементы в электронике, которые обладают определенным номиналом сопротивления и выполняют различные функции.